Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

Give a short description of the nature of the problem and the eventual numerical
methods you have used.

Describe the algorithm you have used and/or developed. Here you may find it con-
venient to use pseudocoding. In many cases you can describe the algorithm in the
program itself.

Include the source code of your program. Comment your program properly.

If possible, try to find analytic solutions, or known limits in order to test your program
when developing the code.

Include your results either in figure form or in a table. Remember to label your
results. All tables and figures should have relevant captions and labels on the axes.

Try to evaluate the reliabilty and numerical stability /precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

Try to give an interpretation of you results in your answers to the problems.

Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you’ve made
when solving the exercise. We wish to keep this course at the interactive level and
your comments can help us improve it.

Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you
don’t properly remember what a previous test version of your program did. Here you
could also record the time spent on solving the exercise, various algorithms you may
have tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript for-
mats. As programming language we prefer that you choose between C/C++, Fortran2008
or Python. The following prescription should be followed when preparing the report:

Use Devilry to hand in your projects, log in at http://devilry.ifi.uio.no| with
your normal UiO username and password and choose either 'fys3150° or 'fys4150’.
There you can load up the files within the deadline.

 http://devilry.ifi.uio.no

e Upload only the report file! For the source code file(s) you have developed please
provide us with your link to your github domain. The report file should include
all of your discussions and a list of the codes you have developed. Do not include
library files which are available at the course homepage, unless you have made specific
changes to them.

e Comments from us on your projects, approval or not, corrections to be made etc can
be found under your Devilry domain and are only visible to you and the teachers of
the course.

Finally, we encourage you to work two and two together. Optimal working groups
consist of 2-3 students. You can then hand in a common report.

Project 3, building a model for the solar system, deadline
October 28 (noon)

The aim of this project is to develop a code for simulating the solar system. In the first part
however, we will limit ourselves (in order to test our Runge-Kutta solver) to a hypothetical
solar system with one planet, say Earth, which orbits around the Sun. The only force in
the problem is gravity. Newton’s law of gravitation is given by a force Fg

Fo— GMsunMEarth

G=" 5
where Mg, is the mass of the Sun and Mg, is the mass of Earth. The gravitational
constant is G' and r is the distance between Earth and the Sun. We assume that the sun
has a mass which is much larger than that of Earth. We can therefore safely neglect the
motion of the sun in this problem. In the first part of this project, your aim is to compute
the motion of the Earth using different methods for solving ordinary differential equations.
We assume that the orbit of Earth around the Sun is co-planar, and we take this to be

the xy-plane. Using Newton’s second law of motion we get the following equations

dzl‘ B FG,:(:

dt2 B MEarth’
and

de . F(;’y

dt2 B MEarth’

where Fg, and Fg, are the and y components of the gravitational force.

a) Rewrite the above second-order ordinary differential equations as a set of coupled
first order differential equations. Write also these equations in terms of dimensionless
variables. As an alternative to the usage of dimensionless variables, you could also
use so-called astronomical units (AU as abbreviation). If you choose the latter set

of units, one astronomical unit of length, known as 1 AU, is the average distance
between the Sun and Earth, that is 1 AU = 1.5 x 10'! m. It can also be convenient
to use years instead of seconds since years match better the solar system. The mass
of the Sun is My, = My = 2 x 10%° kg. The mass of Earth is Mg.q, = 6 x 10** kg.
The mass of other planets like Jupiter is Myypiter = 1.9 x 10?7 kg and its distance to
the Sun is 5.20 AU. Similar numbers for Mars are Mys = 6.6 x 10?3 kg and 1.52 AU,
for Venus Myenus = 4.9 x 10%* kg and 0.72 AU, for Saturn are Msaypun = 5.5 x 10%6
kg and 9.54 AU, for Mercury are Myjercury = 2.4 X 10%* kg and 0.39 AU, for Uranus
are Muranus = 8.8 X 10%° kg and 19.19 AU, for Neptun are Myeptun = 1.03 X 10%° kg
and 30.06 AU and for Pluto are Mpiye = 1.31 x 10?2 kg and 39.53 AU. Pluto is no
longer considered a planet, but we add it here for historical reasons.

Finally, mass units can be obtained by using the fact that Earth’s orbit is almost
circular around the Sun. For circular motion we know that the force must obey the

following relation

2
MEarthU GM@ MEarth
FG = =))

r r
where v is the velocity of Earth. The latter equation can be used to show that

v’r = GM, = 472 AU? /yr?.

Discretize the above differential equations and set up an algorithm for solving these
equations using the so-called Runge-Kutta 4 (RK4 hereafter) method discussed in
the lecture notes, chapter 8.

Write then a program which solves the above differential equations for the Earth-Sun
system using the RK4 method. Your code should now be object-oriented. Try to
figure out which parts and operations could be written as classes and generalized
(hint: one possibility is to write a class which returns the distance between the
various objects. Or, you could write a planet class which contains relevant data
about different planets). Your task here is to think of the program flow and figure
out which parts can be abstracted and reused for many types of operations.

Find out which initial value for the velocity that gives a circular orbit and test the
stability of your algorithm as function of different time steps At. Make a plot of the
results you obtain for the position of Earth (plot the z and y values) orbiting the
Sun.

Check also for the case of a circular orbit that both the kinetic and the potential
energies are constants. Check also that the angular momentum is a constant. Explain
why these quantities are conserved.

Consider then a planet which begins at a distance of 1 AU from the sun. Find out
by trial and error what the initial velocity must be in order for the planet to escape
from the sun. Can you find an exact answer?

e)

We will now study the three-body problem, still with the Sun kept fixed at the center
but including Jupiter (the most massive planet in the solar system, having a mass
that is approximately 1000 times smaller than that of the Sun) together with Earth.
This leads us to a three-body problem. Without Jupiter, Earth’s motion is stable
and unchanging with time. The aim here is to find out how much Jupiter alters
Earth’s motion.

The program you have developed can easily be modified by simply adding the mag-
nitude of the force betweem Earth and Jupiter.

This force is given again by

GMJupiter MEarth
)

FEarth—Jupiter - 2
TEartthupiter

where Mjypiter is the mass of the sun and Mgy, is the mass of Earth. The gravita-
tional constant is G and rgarth—Jupiter 1S the distance between Earth and Jupiter.

We assume again that the orbits of the two planets are co-planar, and we take this to
be the zy-plane. Modify your first-order differential equations in order to accomodate
both the motion of Earth and Jupiter by taking into account the distance in z and
y between Earth and Jupiter. Set up the algorithm and plot the positions of Earth
and Jupiter using the fourth-order Runge-Kutta method. Discuss the stability of the
solutions using your RK4 solver.

Repeat the calculations by increasing the mass of Jupiter by a factor of 10 and 1000
and plot the position of Earth. Study again the stability of the RK4 solver.

Finally, using our RK4 solver, we carry out a real three-body calculation where
all three systems, Earth, Jupiter and the Sun are in motion. To do this, choose
the center-of-mass position of the three-body system as the origin rather than the
position of the sun. Give the sun an initial velocity which makes the total momentum
of the system exactly zero (the center-of-mass will remain fixed). Compare these
results with those from the previous exercise and comment your results. Extend
your program to include all planets in the solar system (if you have time, you can
also include the various moons, but it is not required) and discuss your results. Try
to find data for the initial positions and velocities for all planets.

The perihelion precession of Mercury. This part is optional (frivillig)!

An important test of the general theory of relativity was to compare its prediction
for the perihelion precession of Mercury to the observed value. The observed value of
the perihelion precession, when all classical effects (such as the perturbation of the
orbit due to gravitational attraction from the other planets) are subtracted, is 43"
(43 arc seconds) per century.

Closed elliptical orbits are a special feature of the Newtonian 1/r? force. In general,
any correction to the pure 1/r? behaviour will lead to an orbit which is not closed,

4

i.e. after one complete orbit around the Sun, the planet will not be at exactly the
same position as it started. If the correction is small, then each orbit around the Sun
will be almost the same as the classical ellipse, and the orbit can be thought of as
an ellipse whose orientation in space slowly rotates. In other words, the perihelion
of the ellipse slowly precesses around the Sun.

You will now study the orbit of Mercury around the Sun, adding a general relativistic
correction to the Newtonian gravitational force, so that the force becomes

_ GMSunMMercury |:1 + 3_Z2:|

Fq
r2 7«202

where Mytereury 18 the mass of Mercury, r is the distance between Mercury and the
Sun, | = | x v| is the magnitude of Mercury’s orbital angular momentum per unit
mass, and ¢ is the speed of light in vacuum. Run a simulation over one century of
Mercury’s orbit around the Sun with no other planets present, starting with Mercury
at perihelion on the x axis. Check then the value of the perihelion angle 6, using

tand, = Ip
Lp

where z, (y,) is the (y) position of Mercury at perihelion, i.e. at the point where
Mercury is at its closest to the Sun. You may use that the speed of Mercury at per-
ihelion is 12.44 AU /yr, and that the distance to the Sun at perihelion is 0.3075 AU.
You need to make sure that the time resolution used in your simulation is sufficient,
for example by checking that the perihelion precession you get with a pure Newtonian
force is at least a few orders of magnitude smaller than the observed perihelion pre-
cession of Mercury. Can the observed perihelion precession of Mercury be explained
by the general theory of relativity?

